

Toshihiro Fujii (KICP, ICRR)
for the Telescope Array Collaboration
TAUP 2013

Telescope Array(TA) Experiment

Mass Composition Measurements

- Xmax depends on the mass composition of primary cosmic ray.
 - № 100 g/cm² difference between proton and iron primaries.
 - A limited field of view for FDs leads to a bias on observed Xmax.

TA: Estimate the bias from MC simulations, and compare observed values.

Auger: Bias free measurement by a fiducial volume cut.

Overview of this work

- We analyze newly constructed FDs which are BRM and LR stations in monocular mode.
 - Larger statistics than Stereo or Hybrid analysis.
 - Broad energy range.
 - Poorer geometrical resolution.
- To study the effect of fiducial volume cuts, we adopt tight cuts to avoid reconstruction bias and achieve reasonable resolutions on Xmax in monocular mode.

Geometry Reconstruction

Monocular Mode

Timing fit in only 1 FD station

$$t_i = t_{core} + \frac{1}{c} \frac{\sin \psi - \sin \alpha_i}{\sin(\psi + \alpha_i)} r_{core}$$

Stereo Mode

Triggered by 2 FD stations

SDP= shower detector plane

Profile Reconstruction

Reconstructed Shower Geometry **Inverse Monte Carlo**

Repeatedly simulate shower images with changing longitudinal development parameters of Gaisser-Hillas (G.H.) function.

Shower simulation based on G.H.Function

Signal at camera

Plot: Data

Histogram(Red): Fluorescence (MC) Histogram(Blue): Cherenkov (MC)

Quality Cuts

Tight quality cuts are adopted to achieve a reasonable resolution and smaller reconstruction bias on Xmax.

- Many timing data points for downward-going shower geometry.
- Xstart is shallow enough and Xend is deep enough to observe longitudinal developments.

- Shower
- Xend

- $\psi < 90$ degree.
 - Impact parameter(Rp) > 5 km

 - \odot Xend > 900 g/cm²

Use identical cuts for all energies, species and models.

Field of view

Resolution Study by MC

- 1. Generate artificial data calculated by MC simulations.
- 2. Reconstruct this simulated data in monocular analysis, and compare reconstructed results with true ones.

Arrival Direction

Proton: 3.0 deg. (68%)

Iron: 2.8 deg. (68%)

Xmax

Proton: 54.5 g/cm²

Iron: 46.5 g/cm²

Reconstruction Bias on Xmax

Reconstructed bias on Xmax is less than 10 g/cm² for all species and models.

Data Set and Analysis

 $2008/Jan/01 \sim 2011/Sep/07$ 3.7 years

BRM: 2399 hrs (duty: 7.4%)

LR: 2054 hrs (duty: 6.3%)

(cloud cut and dead time subtracted)

Use identical reconstruction procedures and quality cuts in both observed and MC data.

Number of events

1381 showers (logE>18.0, BRM&LR)

Data/MC Comparison

Averaged Xmax

The measured Xmax is consistent with proton dominance.

Total	$19 \mathrm{\ g/cm^2}$
Reconstruction	10 g/cm^2
Detector Geometry	9 g/cm^2
Calibration	5 g/cm^2
Atmosphere	12 g/cm^2
Fluorescence Yield	5 g/cm^2
Item	$\Lambda_{ m max}$

Xmax distributions (QGSJetII-03)

Reconstructed Xmax [g/cm²]

18.6≤logE<19.0

 $18.3 \le \log E < 18.6$

19.0≤logE

TALE (Telescope Array Low Energy Extension)

Summary and Future Plans

- We measured the mass composition to analyze data collected during 3.7 years by newly constructed fluorescence detector of TA in monocular mode.
 - Tight cuts are adopted to achieve reasonable resolution and smaller Xmax reconstruction bias.
- The measured Xmax is consistent with proton dominance, and also in good agreement with Stereo or Hybrid measurements.

- Use updated hadron interaction models, such as QGSJetII-04 and EPOS-LHC.
- Systematic uncertainty study for low energy showers

